


xli

A decade into the twenty-first century, biomaterials are 
widely used throughout medicine, dentistry, and biotech-
nology. Just 60 years ago biomaterials as we think of 
them today did not exist. The word “biomaterial” was 
not used. There were no medical device manufactur-
ers (except for external prosthetics such as limbs, frac-
ture fixation devices, glass eyes, and dental fillings and 
devices), no formalized regulatory approval processes, 
no understanding of biocompatibility, and certainly no 
academic courses on biomaterials. Yet, crude biomateri-
als have been used, generally with poor to mixed results, 
throughout history. This chapter will broadly trace the 
history of biomaterials from the earliest days of human 
civilization to the dawn of the twenty-first century. It 
is convenient to organize the history of biomaterials 
into four eras: prehistory; the era of the surgeon hero; 
designed biomaterials/engineered devices; and the con-
temporary era taking us into the new millennium. The 
emphasis of this chapter will be on the experiments and 
studies that set the foundation for the field we call bio-
materials, largely between 1920 and 1980.

BIOMATERIALS BEFORE WORLD WAR II

Before Civilization

The introduction of non-biological materials into the 
human body took place throughout history. The remains 
of a human found near Kennewick, Washington, USA 
(often referred to as the “Kennewick Man”) were dated 
(with some controversy) to be 9000 years old. This indi-
vidual, described by archeologists as a tall, healthy, active 
person, wandered through the region now know as south-
ern Washington with a spear point embedded in his hip. It 
had apparently healed in, and did not significantly impede 
his activity. This unintended implant illustrates the body’s 
capacity to deal with implanted foreign materials. The 
spear point has little resemblance to modern biomateri-
als, but it was a “tolerated” foreign material implant, just 
the same. Another example of the introduction of foreign 
material into the skin, dated to over 5000 years ago, is the 
tattoo. The carbon particles and other substances prob-
ably elicited a classic foreign-body reaction.

Dental Implants in Early Civilizations

Unlike the spear point described above, dental implants 
were devised as implants and used early in history. The 
Mayan people fashioned nacre teeth from sea shells 
in roughly 600 ad, and apparently achieved what we 
now refer to as osseointegration (see Chapter II.5.7), 
basically a seamless integration into the bone (Bobbio, 
1972). Similarly, in France, a wrought iron dental 
implant in a corpse was dated to 200 ad (Crubezy 
et al., 1998). This implant, too, was described as prop-
erly osseointegrated. There was no materials science,  
biological understanding, or medicine behind these pro-
cedures. Still, their success (and longevity) is impressive 
and highlights two points: the forgiving nature of the 
human body and the pressing drive, even in prehistoric 
times, to address the loss of physiologic/anatomic func-
tion with an implant.

Sutures Dating Back Thousands of Years

There is loose evidence that sutures may have been used 
even in the Neolithic period. Large wounds were closed 
early in history primarily by one of two methods  – 
cautery or sutures. Linen sutures were used by the early 
Egyptians. Catgut was used in the middle ages in Europe. 
In South Africa and India, the heads of large, biting ants 
clamped wound edges together.

Metallic sutures are first mentioned in early Greek lit-
erature. Galen of Pergamon (circa 130–200 ad) described 
ligatures of gold wire. In 1816, Philip Physick, Univer-
sity of Pennsylvania Professor of Surgery, suggested the 
use of lead wire sutures, noting little reaction. J. Marion 
Sims of Alabama had a jeweler fabricate sutures of silver 
wire, and in 1849 performed many successful operations 
with this metal.

Consider the problems that must have been expe-
rienced with sutures in eras with no knowledge of 
sterilization, toxicology, immunological reaction to 
extraneous biological materials, inflammation, and 
biodegradation. Yet sutures were a relatively common 
fabricated or manufactured biomaterial for thousands 
of years.
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Artificial Hearts and Organ Perfusion

In the fourth century bc, Aristotle called the heart the 
most important organ in the body. Galen proposed that 
veins connected the liver to the heart to circulate “vital 
spirits throughout the body via the arteries.” English 
physician William Harvey, in 1628 espoused a rela-
tively modern view of heart function when he wrote: 
“the heart’s one role is the transmission of the blood and 
its propulsion, by means of the arteries, to the extremi-
ties everywhere.” With the appreciation of the heart 
as a pump, it was a logical idea to think of replacing 
the heart with an artificial pump. In 1812, the French 
physiologist Le Gallois expressed his idea that organs 
could be kept alive by pumping blood through them. A 
number of experiments on organ perfusion with pumps  
were performed from 1828 to 1868. In 1881, Étienne-Jules 
Marey, a brilliant scientist and thinker who published 
and invented in photographic technology, motion stud-
ies, and physiology, described an artificial heart device 
(Figure 1), primarily oriented to studying the beating of 
the heart.

In 1938, aviator (and engineer) Charles Lindbergh and 
surgeon (and Nobel Prize Winner) Alexis Carrel wrote a 
visionary book, The Culture of Organs. They addressed 
issues of pump design (referred to as the Lindbergh 

pump), sterility, blood damage, the nutritional needs of 
perfused organs, and mechanics. This book is a seminal 
document in the history of artificial organs. In the mid-
1950s, Dr. Paul Winchell, better known as a ventrilo-
quist, patented an artificial heart. In 1957, Dr. Willem 
Kolff and a team of scientists tested the artificial heart 
in animals. More modern conceptions of the artificial 
heart (and left ventricular assist device) will be presented 
below and in Chapter II.5.3.D).

Contact Lenses

Leonardo DaVinci, in the year 1508, developed the con-
cept of contact lenses. Rene Descartes is credited with 
the idea of the corneal contact lens (1632) and Sir John 
F. W. Herschel (1827) suggested that a glass lens could 
protect the eye. Adolf Gaston Eugen Fick (nephew of 
Adolf Eugen Fick of Fick’s Law of Diffusion fame) was 
an optometrist by profession. One of his inventions 
(roughly 1860) was a glass contact lens, possibly the 
first contact lens offering real success. He experimented 
on both animals and humans with contact lenses. In the 
period from 1936 to 1948, plastic contact lenses were 
developed, primarily of poly(methyl methacrylate).

Basic Concepts of Biocompatibility

Most implants prior to 1950 had a low probability of 
success, because of a poor understanding of biocom-
patibility and sterilization. As will be elaborated upon 
throughout the textbook, factors that contribute to 
biocompatibility include the chemistry of the implant, 
leachables, shape, mechanics, and design. Early studies, 
especially with metals, focused primarily on ideas from 
chemistry to explain the observed bioreaction.

Possibly the first study assessing the in vivo bioreactiv-
ity of implant materials was performed by H. S. Levert 
(1829). Gold, silver, lead, and platinum specimens were 
studied in dogs, and platinum, in particular, was found 
to be well-tolerated. In 1886, bone fixation plates of 
nickel-plated sheet steel with nickel-plated screws were 
studied. In 1924, A. Zierold published a study on tissue 
reaction to various materials in dogs. Iron and steel were 
found to corrode rapidly, leading to resorption of adja-
cent bone. Copper, magnesium, aluminum alloy, zinc, 
and nickel discolored the surrounding tissue. Gold, sil-
ver, lead, and aluminum were tolerated, but inadequate 
mechanically. Stellite, a Co–Cr–Mo alloy, was well toler-
ated and strong. In 1926, M. Large noted inertness dis-
played by 18-8 stainless steel containing molybdenum. 
By 1929 Vitallium alloy (65% Co–30% Cr–5%Mo) was 
developed and used with success in dentistry. In 1947, J. 
Cotton of the UK discussed the possible use of titanium 
and alloys for medical implants.

The history of plastics as implantation materials does 
not extend as far back as metals, simply because there 
were few plastics prior to the 1940s. What is possibly FIGURE 1  An artificial heart by Étienne-Jules Marey, Paris, 1881.
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the first paper on the implantation of a modern synthetic 
polymer, nylon, as a suture appeared in 1941. Papers on 
the implantation of cellophane, a polymer made from 
plant sources, were published as early as 1939, it being 
used as a wrapping for blood vessels. The response to 
this implant was described as a “marked fibrotic reac-
tion.” In the early 1940s papers appeared discussing 
the reaction to implanted poly(methyl methacrylate)
(PMMA) and nylon. The first paper on polyethylene 
as a synthetic implant material was published in 1947 
(Ingraham et al.). The paper pointed out that polyeth-
ylene production using a new high pressure polymeriza-
tion technique began in 1936. This process enabled the 
production of polyethylene free of initiator fragments 
and other additives. Ingraham et al. demonstrated good 
results on implantation (i.e., a mild foreign-body reac-
tion), and attributed these results to the high purity of the 
polymer they used. A 1949 paper commented on the fact 
that additives to many plastics had a tendency to “sweat 
out,” and this might be responsible for the strong bio-
logical reaction to those plastics (LeVeen and Barberio, 
1949). They found a vigorous foreign-body reaction to 
cellophane, Lucite®, and nylon, but an extremely mild 
reaction to “a new plastic,” Teflon®. The authors inci-
sively concluded: “Whether the tissue reaction is due to 
the dissolution of traces of the unpolymerized chemical 
used in plastics manufacture or actually to the solution 
of an infinitesimal amount of the plastic itself cannot be 
determined.” The possibility that cellulose might trigger 
the severe reaction by activating the complement system 
could not have been imagined, because the complement 
system had not yet been discovered.

WORLD WAR II TO THE MODERN ERA: 
THE SURGEON/PHYSICIAN HERO

During World War I, and particularly at the end of the 
war, newly developed high-performance metal, ceramic, 
and especially polymeric materials, transitioned from 
wartime restriction to peacetime availability. The pos-
sibilities for using these durable, inert materials immedi-
ately intrigued surgeons with needs to replace diseased or 
damaged body parts. Materials, originally manufactured 
for airplanes, automobiles, clocks, and radios were taken 
“off-the-shelf” by surgeons and applied to medical prob-
lems. These early biomaterials included silicones, poly-
urethanes, Teflon®, nylon, methacrylates, titanium, and 
stainless steel.

A historical context helps us appreciate the contri-
bution made primarily by medical and dental practitio-
ners. Just after World War II, there was little precedent 
for surgeons to collaborate with scientists and engi-
neers. Medical and dental practitioners of this era felt 
it was appropriate to invent (improvise) where the life 
or functionality of their patient was at stake. Also, 
there was minimal government regulatory activity, and 
human subject protections as we know them today were 

non-existent (see Chapters III.2.4 and III.2.7). The phy-
sician was implicitly entrusted with the life and health 
of the patient and had much more freedom than is seen 
today to take heroic action when other options were 
exhausted.1 These medical practitioners had read about 
the post-World War II marvels of materials science. 
Looking at a patient open on the operating table, they 
could imagine replacements, bridges, conduits, and even 
organ systems based on such materials. Many materials 
were tried on the spur of the moment. Some fortuitously 
succeeded. These were high risk trials, but usually they 
took place where other options were not available. The 
term “surgeon hero” seems justified, since the surgeon 
often had a life (or a quality of life) at stake and was will-
ing to take a huge technological and professional leap 
to repair the individual. This laissez faire biomaterials 
era quickly led to a new order characterized by scientific/
engineering input, government quality controls, and a 
sharing of decisions prior to attempting high-risk, novel 
procedures. Still, a foundation of ideas and materials for 
the biomaterials field was built by courageous, fiercely 
committed, creative individuals, and it is important to 
look at this foundation to understand many of the atti-
tudes, trends, and materials common today.

Intraocular Lenses

Sir Harold Ridley, MD (1906–2001) (Figure 2), inventor 
of the plastic intraocular lens (IOL), made early, accurate 
observations of biological reaction to implants consistent 
with currently accepted ideas of biocompatibility. After 
World War II, he had the opportunity to examine avia-
tors who were unintentionally implanted in their eyes 
with shards of plastic from shattered canopies in Spitfire 
and Hurricane fighter planes (Figure 2). Most of these 
flyers had plastic fragments years after the war. The con-
ventional wisdom at that time was that the human body 
would not tolerate implanted foreign objects, especially 
in the eye – the body’s reaction to a splinter or a bul-
let was cited as examples of the difficulty of implanting 
materials in the body. The eye is an interesting implant 
site, because you can look in through a transparent 
window to observe the reaction. When Ridley did so, 
he noted that the shards had healed in place with no 
further reaction. They were, by his standard, tolerated 

1The regulatory climate in the US in the 1950s was strikingly dif-
ferent from today. This can be appreciated in this recollection from 
Willem Kolff about a pump oxygenator he made and brought with 
him from Holland to the Cleveland Clinic (Kolff, W. J., 1998): 
“Before allowing Dr. Effler and Dr. Groves to apply the pump oxy-
genator clinically to human babies, I insisted they do 10 consecu-
tive, successful operations in baby dogs. The chests were opened, 
the dogs were connected to a heart-lung machine to maintain the 
circulation, the right ventricles were opened, a cut was made in 
the interventricular septa, the septa holes were closed, the right 
ventricles were closed, the tubes were removed and the chests were 
closed. (I have a beautiful movie that shows these 10 puppies trying 
to crawl out of a basket).
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by the eye. Today, we would describe this stable heal-
ing without significant ongoing inflammation or irrita-
tion as “biocompatible.” This is an early observation of 
“biocompatibility” in humans, perhaps the first, using 
criteria similar to those accepted today. Based on this 
observation, Ridley traced down the source of the plas-
tic domes, ICI Perspex® poly(methyl methacrylate). He 
used this material to fabricate implant lenses (intraocu-
lar lenses) that were found, after some experimentation, 
to function reasonably in humans as replacements for 
surgically removed natural lenses that had been clouded 
by cataracts. The first implantation in a human was on 
November 29, 1949. For many years, Ridley was the 
center of fierce controversy because he challenged the 
dogma that spoke against implanting foreign materials 
in eyes – it is hard to believe that the implantation of a 
biomaterial would provoke such an outcry. Because of 
this controversy, this industry did not instantly arise – it 
was the early 1980s before IOLs became a major force in 
the biomedical device market. Ridley’s insightful obser-
vation, creativity, persistence, and surgical talent in the 
late 1940s evolved into an industry that presently puts 
more than 7,000,000 of these lenses annually in humans. 
Through all of human history, cataracts meant blindness 
or a surgical procedure that left the recipient needing 
thick, unaesthetic spectacle lenses that poorly corrected 
the vision. Ridley’s concept, using a plastic material 
found to be “biocompatible,” changed the course of his-
tory and substantially improved the quality of life for 
millions of individuals with cataracts. Harold Ridley’s 
story is elaborated upon in an obituary (Apple and 
Trivedi, 2002).

Hip and Knee Prostheses

The first hip replacement was probably performed in 
1891 by a German surgeon, Theodore Gluck, using a 
cemented ivory ball. This procedure was not successful. 
Numerous attempts were made between 1920 and 1950 
to develop a hip replacement prosthesis. Surgeon M. 
N. Smith-Petersen, in 1925, explored the use of a glass 
hemisphere to fit over the ball of the hip joint. This failed 

due to poor durability. Chrome–cobalt alloys and stain-
less steel offered improvements in mechanical properties, 
and many variants of these were explored. In 1938, the 
Judet brothers of Paris, Robert and Jean, explored an 
acrylic surface for hip procedures, but it had a tendency 
to loosen. The idea of using fast setting dental acrylics to 
glue prosthetics to bone was developed by Dr. Edward 
J. Haboush in 1953. In 1956, McKee and Watson-
Farrar developed a “total” hip with an acetabular cup 
of metal that was cemented in place. Metal-on-metal 
wear products probably led to high complication rates. 
It was John Charnley (1911–1982) (Figure 3), working 
at an isolated tuberculosis sanatorium in Wrightington, 
Manchester, England, who invented the first really suc-
cessful hip joint prosthesis. The femoral stem, ball head, 
and plastic acetabular cup proved to be a reasonable 
solution to the problem of damaged joint replacement. 
In 1958, Dr. Charnley used a Teflon acetabular cup 
with poor outcomes due to wear debris. By 1961 he was 
using a high molecular weight polyethylene cup, and 
was achieving much higher success rates. Interestingly, 
Charnley learned of high molecular weight polyethyl-
ene from a salesman selling novel plastic gears to one 
of his technicians. Dr. Dennis Smith contributed in an 
important way to the development of the hip prosthesis 
by introducing Dr. Charnley to poly(methyl methacry-
late) cements, developed in the dental community, and 
optimizing those cements for hip replacement use. Total 
knee replacements borrowed elements of the hip pros-
thesis technology, and successful results were obtained in 
the period 1968–1972 with surgeons Frank Gunston and 
John Insall leading the way.

Dental Implants

Some “prehistory” of dental implants has been described 
above. In 1809, Maggiolo implanted a gold post anchor 
into fresh extraction sockets. After allowing this to heal, 
he affixed to it a tooth. This has remarkable similarity 
to modern dental implant procedures. In 1887, this pro-
cedure was used with a platinum post. Gold and plati-
num gave poor long-term results, and so this procedure 

FIGURE 2  Left: Sir Harold Ridley, inventor of the intraocular lens, knighted by Queen Elizabeth II for his achievement. Right: Shards from the 
canopy of the Spitfire airplane were the inspiration leading to intraocular lenses. (Image by Bryan Fury75 at fr.wikipedia [GFDL (www.gnu.org
/copyleft/fdl.html), from Wikimedia Commons].)

http://www.gnu.org/copyleft/fdl.html
http://www.gnu.org/copyleft/fdl.html
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was never widely adopted. In 1937, Venable used sur-
gical Vitallium and Co–Cr–Mo alloy for such implants. 
Also around 1937, Strock at Harvard used a screw-type 
implant of Vitallium, and this may be the first successful 
dental implant. A number of developments in surgical 
procedure and implant design (for example, the endos-
teal blade implant) then took place. In 1952, a fortuitous 
discovery was made. Per Ingvar Brånemark, an ortho-
pedic surgeon at the University of Lund, Sweden, was 
implanting an experimental cage device in rabbit bone 
for observing healing reactions. The cage was a titanium 
cylinder that screwed into the bone. After completing the 
experiment that lasted several months, he tried to remove 
the titanium device and found it tightly integrated in the 
bone (Brånemark et al., 1964). Dr. Brånemark named 
the phenomenon “osseointegration,” and explored the 
application of titanium implants to surgical and dental 
procedures. He also developed low-impact surgical pro-
tocols for tooth implantation that reduced tissue necrosis 
and enhanced the probability of good outcomes. Most 
dental implants and many other orthopedic implants are 
now made of titanium and its alloys.

The Artificial Kidney

Kidney failure, through most of history, was a sentence 
to an unpleasant death lasting over a period of about 
a month. In 1910, at Johns Hopkins University, the 
first attempts to remove toxins from blood were made 
by John Jacob Abel. The experiments were with rabbit 
blood, and it was not possible to perform this procedure 

on humans. In 1943, in Nazi-occupied Holland, Willem 
Kolff (Figure 4), a physician just beginning his career at 
that time, built a drum dialyzer system from a 100 liter 
tank, wood slats, and 130 feet of cellulose sausage casing 
tubing as the dialysis membrane. Some successes were 
seen in saving lives where prior to this there was only 
one unpleasant outcome to kidney failure. Kolff took his 
ideas to the United States and in 1960, at the Cleveland 
Clinic, developed a “washing machine artificial kidney” 
(Figure 5).

Major advances in kidney dialysis were made by 
Dr.  Belding Scribner at the University of Washington 
(Figure 6). Scribner devised a method to routinely access 
the bloodstream for dialysis treatments. Prior to this, 
after just a few treatments, access sites to the blood were 
used up and further dialysis was not possible. After seeing 
the potential of dialysis to help patients, but only acutely, 
Scribner tells the story of waking up in the middle of the 
night with an idea to gain easy access to the blood – a 
shunt implanted between an artery and vein that emerged 
through the skin as a “U.” Through the exposed por-
tion of the shunt, blood access could be readily achieved. 
When Dr. Scribner heard about the new plastic, Teflon®, 
he envisioned how to get the blood out of and into the 
blood vessels. His device, built with the assistance of 
Wayne Quinton (Figure 6), used Teflon tubes to access 
the vessels, a Dacron® sewing cuff through the skin, and 
a silicone rubber tube for blood flow. The Quinton–
Scribner shunt made chronic dialysis possible, and is said 
to be responsible for more than a million patients being 
alive today. Interestingly, Dr. Scribner refused to patent 

FIGURE 3  Left: Sir John Charnley. Right: The original Charnley hip prosthesis. (Hip prosthesis photo courtesy of the South Australian Medical 
Heritage Society, Inc.)
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his invention because of its importance to medical care. 
Additional important contributions to the artificial kid-
ney were made by Chemical Engineering Professor Les 
Babb (University of Washington) who, working with 
Scribner, improved dialysis performance and invented 
a proportioning mixer for the dialysate fluid. The first 
dialysis center was opened in Seattle making use of these 
important technological advances (Figure 6). The early 
experience with dialyzing patients where there were not 
enough dialyzers to meet the demand also made impor-
tant contributions to bioethics associated with medical 
devices (Blagg, 1998).

The Artificial Heart

Willem Kolff was also a pioneer in the development of 
the artificial heart. He implanted the first artificial heart 

in the Western hemisphere in a dog in 1957 (a Russian 
artificial heart was implanted in a dog in the late 1930s). 
The Kolff artificial heart was made of a thermosetting 
poly(vinyl chloride) cast inside hollow molds to prevent 
seams. In 1953, the heart-lung machine was invented by 
John Gibbon, but this was useful only for acute treat-
ment, such as during open heart surgery. In 1964, the 
National Heart and Lung Institute of the NIH set a goal 
of a total artificial heart by 1970. Dr. Michael DeBakey 
implanted a left ventricular assist device in a human 
in 1966, and Dr. Denton Cooley and Dr.  William 
Hall implanted a polyurethane total artificial heart in 
1969. In the period 1982–1985, Dr.  William DeVries 
implanted a number of Jarvik hearts based upon designs 
originated by Drs. Clifford Kwan-Gett and Donald 
Lyman – patients lived up to 620 days on the Jarvik 7® 
device.

FIGURE 5  Willem Kolff (center) and the washing machine artifi-
cial kidney.

FIGURE 6  (a) Belding Scribner (Courtesy of Dr. Eli Friedman); (b) Wayne Quinton (Photo by B. Ratner); (c) Plaque commemorating the original 
location in Seattle of the world’s first artificial kidney center.

FIGURE 4  Dr. Willem Kolff at age 92. (Photograph by B. Ratner.)
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Breast Implants

The breast implant evolved to address the poor results 
achieved with direct injection of substances into the breast 
for augmentation. In fact, in the 1960s, California and 
Utah classified use of silicone injections as a criminal 
offense. In the 1950s, poly(vinyl alcohol) sponges were 
implanted as breast prostheses, but results with these were 
also poor. University of Texas plastic surgeons Thomas 
Cronin and Frank Gerow invented the first silicone breast 
implant in the early 1960s, a silicone shell filled with sili-
cone gel. Many variations of this device have been tried 
over the years, including cladding the device with polyure-
thane foam (the Natural Y implant). This variant of the 
breast implant was fraught with problems. However, the 
basic silicone rubber–silicone gel breast implant was gen-
erally acceptable in performance (Bondurant et al., 1999).

Vascular Grafts

Surgeons have long needed methods and materials to 
repair damaged and diseased blood vessels. Early in the 
century, Dr. Alexis Carrel developed methods to anasto-
mose (suture) blood vessels, an achievement for which he 
won the Nobel Prize in medicine in 1912. In 1942 Black-
more used Vitallium metal tubes to bridge arterial defects  
in war wounded soldiers. Columbia University surgical 
intern Arthur Voorhees (1922–1992), in 1947, noticed 
during a post-mortem that tissue had grown around a 
silk suture left inside a lab animal. This observation stim-
ulated the idea that a cloth tube might also heal by being 
populated by the tissues of the body. Perhaps such a heal-
ing reaction in a tube could be used to replace an artery? 
His first experimental vascular grafts were sewn from a 
silk handkerchief and then parachute fabric (Vinyon N), 
using his wife’s sewing machine. The first human implant 
of a prosthetic vascular graft was in 1952. The patient 
lived many years after this procedure, inspiring many 
surgeons to copy the procedure. By 1954, another paper 
was published establishing the clear benefit of a porous 
(fabric) tube over a solid polyethylene tube (Egdahl et al., 
1954). In 1958, the following technique was described 
in a textbook on vascular surgery (Rob, 1958): “The 
Terylene, Orlon or nylon cloth is bought from a draper’s 
shop and cut with pinking shears to the required shape. 
It is then sewn with thread of similar material into a tube 
and sterilized by autoclaving before use.”

Stents

Partially occluded coronary arteries lead to angina, 
diminished heart functionality and eventually, when the 
artery occludes (i.e., myocardial infarction), death of a 
localized portion of the heart muscle. Bypass operations 
take a section of vein from another part of the body 
and replace the occluded coronary artery with a clean 
conduit – this is major surgery, hard on the patient, and 

expensive. Synthetic vascular grafts in the 3 mm diam-
eter size that is appropriate to the human coronary 
artery anatomy will thrombose, and thus cannot be 
used. Another option is percutaneous transluminal coro-
nary angioplasty (PTCA). In this procedure, a balloon is 
threaded on a catheter into the coronary artery and then 
inflated to open the lumen of the occluding vessel. How-
ever, in many cases the coronary artery can spasm and 
close from the trauma of the procedure. The invention of 
the coronary artery stent, an expandable mesh structure 
that holds the lumen open after PTCA, was revolution-
ary in the treatment of coronary occlusive disease. In his 
own words, Dr. Julio Palmaz (Figure 7) describes the ori-
gins and history of the cardiovascular stent.

I was at a meeting of the Society of Cardiovascular 
and Interventional Radiology in February 1978 
when a visiting lecturer, Doctor Andreas Gruntzig 
from Switzerland, was presenting his preliminary 
experience with coronary balloon angioplasty. 
As you know, in 1978 the mainstay therapy of 
coronary heart disease was surgical bypass. Doctor 
Gruntzig showed his promising new technique to 
open up coronary atherosclerotic blockages without 
the need for open chest surgery, using his own 
plastic balloon catheters. During his presentation, 
he made it clear that in a third of the cases, the 
treated vessel closed back after initial opening with 
the angioplasty balloon because of elastic recoil or 
delamination of the vessel wall layers. This required 
standby surgery facilities and personnel, in case 
acute closure after balloon angioplasty prompted 
emergency coronary bypass. Gruntzig’s description 
of the problem of vessel reclosure elicited in my 
mind the idea of using some sort of support, such 
as used in mine tunnels or in oil well drilling. Since 

FIGURE 7  Dr. Julio Palmaz, inventor of the coronary artery stent. 
(Photograph by B. Ratner.)
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the coronary balloon goes in small (folded like an 
umbrella) and is inflated to about 3–4 times its initial 
diameter, my idealistic support device needed to go 
in small and expand at the site of blockage with 
the balloon. I thought one way to solve this was 
a malleable, tubular, criss-cross mesh. I went back 
home in the Bay Area and started making crude 
prototypes with copper wire and lead solder, which 
I first tested in rubber tubes mimicking arteries. 
I called the device a BEIS or balloon-expandable 
intravascular graft. However, the reviewers of my 
first submitted paper wanted to call it a stent. When 
I looked the word up, I found out that it derives 
from Charles Stent, a British dentist who died at  
the turn of the century. Stent invented a wax material 
to make dental molds for dentures. This material 
was later used by plastic surgeons to keep tissues in 
place, while healing after surgery. The word “stent” 
was then generically used for any device intended  
to keep tissues in place while healing.

I made the early experimental device of stainless 
steel wire soldered with silver. These were 
materials I thought would be appropriate for initial 
laboratory animal testing. To carry on with my 
project I moved to the University of Texas Health 
Science Center in San Antonio (UTHSCSA). From 
1983–1986 I performed mainly bench and animal 
testing that showed the promise of the technique and 
the potential applications it had in many areas of 
vascular surgery and cardiology. With a UTHSCSA 
pathologist, Doctor Fermin Tio, we observed our 
first microscopic specimen of implanted stents in 
awe. After weeks to months after implantation by 
catheterization under X-ray guidance, the stent had 
remained open, carrying blood flow. The metal 
mesh was covered with translucent, glistening tissue 
similar to the lining of a normal vessel. The question 
remained whether the same would happen in 
atherosclerotic vessels. We tested this question in the 
atherosclerotic rabbit model and to our surprise, the 
new tissue free of atherosclerotic plaque encapsulated 
the stent wires, despite the fact that the animals were 
still on a high cholesterol diet. Eventually, a large 
sponsor (Johnson & Johnson) adopted the project 
and clinical trials were instituted under the scrutiny 
of the Food and Drug Administration.

Coronary artery stenting is now performed in well over 
1.5 million procedures per year.

Pacemakers

In London in 1788, Charles Kite wrote “An Essay Upon 
the Recovery of the Apparently Dead,” where he dis-
cussed electrical discharges to the chest for heart resus-
citation. In the period 1820–1880 it was already known 
that electric shocks could modulate the heartbeat (and, 

of course, consider the Frankenstein story from that era). 
The invention of the portable pacemaker, hardly porta-
ble by modern standards, may have taken place almost 
simultaneously in two groups in 1930–1931 – Dr. Albert 
S. Hyman (USA) (Figure 8), and Dr. Mark C. Lidwill 
(working in Australia with physicist Major Edgar Booth).

Canadian electrical engineer, John Hopps, while con-
ducting research on hypothermia in 1949, invented an 
early cardiac pacemaker. Hopps’ discovery was if a cooled 
heart stopped beating, it could be electrically restarted. 
This led to Hopps’ invention of a vacuum tube cardiac 
pacemaker in 1950. Paul M. Zoll developed a pacemaker 
in conjunction with the Electrodyne Company in 1952. 
The device was about the size of a small microwave oven, 
was powered with external current, and stimulated the 
heart using electrodes placed on the chest – this therapy 
caused pain and burns, although it could pace the heart.

In the period 1957–1958, Earl E. Bakken, founder of 
Medtronics, Inc. developed the first wearable transistor-
ized (external) pacemaker at the request of heart surgeon 
Dr. C. Walton Lillehei. Bakken quickly produced a pro-
totype that Lillehei used on children with post-surgery 
heart block. Medtronic commercially produced this 
wearable, transistorized unit as the 5800 pacemaker.

In 1959 the first fully-implantable pacemaker was 
developed by engineer Wilson Greatbatch and cardiolo-
gist W.M. Chardack. He used two Texas Instruments 
transistors, a technical innovation that permitted small 
size and low power drain. The pacemaker was encased in 
epoxy to inhibit body fluids from inactivating it.

FIGURE 8  The Albert Hyman Model II portable pacemaker, circa 
1932–1933. (Courtesy of the NASPE-Heart Rhythm Society History 
Project (www.Ep-History.org).)

http://www.Ep-History.org
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Heart Valves

The development of the prosthetic heart valve paralleled 
developments in cardiac surgery. Until the heart could be 
stopped and blood flow diverted, the replacement of a 
valve would be challenging. Charles Hufnagel, in 1952, 
implanted a valve consisting of a poly(methyl methac-
rylate) tube and nylon ball in a beating heart (Figure 9). 
This was a heroic operation and basically unsuccess-
ful, but an operation that inspired cardiac surgeons to 
consider that valve prostheses might be possible. The 
1953 development of the heart-lung machine by Gibbon 
allowed the next stage in the evolution of the prosthetic 
heart valve to take place. In 1960, a mitral valve replace-
ment was performed in a human by surgeon Albert 
Starr, using a valve design consisting of a silicone ball 
and poly(methyl methacrylate) cage (later replaced by 
a stainless steel cage). The valve was invented by engi-
neer Lowell Edwards. The heart valve was based on a 
design for a bottle stopper invented in 1858. Starr was 
quoted as saying: “Let’s make a valve that works and 
not worry about its looks,” referring to its design that 
was radically different from the leaflet valve that nature 
evolved in mammals. Prior to the Starr–Edwards valve, 
no human had lived with a prosthetic heart valve lon-
ger than three months. The Starr–Edwards valve was 
found to permit good patient survival. The major issues 
in valve development in that era were thrombosis and 
durability. In 1969, Warren Hancock started the devel-
opment of the first leaflet tissue heart valve based upon 

glutaraldehyde-treated pig valves, and his company and 
valve were acquired by Johnson & Johnson in 1979.

Drug Delivery and Controlled Release

Through most of history drugs were administered orally 
or by hypodermic syringe. In general, there was no effort 
to modulate the rate of uptake of the drug into the body. 
In 1949, Dale Wurster invented what is now known as 
the Wurster process that permitted pills and tablets to be 
encapsulated and therefore slow their release rate. How-
ever, modern ideas of controlled release can be traced to 
a medical doctor, Judah Folkman. Dr. Folkman noted 
that dyes penetrated deeply into silicone rubber, and he 
surmised from this that drugs might do the same. He 
sealed isoproterenol (a drug used to treat heart block) 
into silicone tubes, and implanted these into the hearts of 
dogs (Folkman and Long, 1964). He noted the delayed 
release and later applied this same idea to delivering a 
birth control steroid. He donated this development, 
patent-free, to the World Population Council. An entre-
preneur and chemist, Alejandro Zaffaroni, heard of the 
Folkman work, and launched a company in 1970, Alza 
(originally called Pharmetrics), to develop these ideas for 
the pharmaceutical industry. The company developed 
families of new polymers for controlled release, and also 
novel delivery strategies. Alza was a leader in launching 
this new field that is so important today; further details 
on the field of controlled release are provided in an excel-
lent historical overview (Hoffman, 2008).

DESIGNED BIOMATERIALS

In contrast to the biomaterials of the surgeon-hero era, 
when largely off-the-shelf materials were used to fabri-
cate medical devices, the 1960s on saw the development 
of materials designed specifically for biomaterials appli-
cations. Here are some key classes of materials and their 
evolution from commodity materials to engineered/syn-
thesized biomaterials.

Silicones

Although the class of polymers known as silicones has 
been explored for many years, it was not until the early 
1940s that Eugene Rochow of GE pioneered the scale-up 
and manufacture of commercial silicones via the reaction 
of methyl chloride with silicon in the presence of cata-
lysts. In Rochow’s 1946 book, The Chemistry of Silicones 
(John Wiley & Sons, Publishers), he comments anecdot-
ally on the low toxicity of silicones, but did not propose 
medical applications. Possibly the first report of silicones 
for implantation was by Lahey (1946) (see also Chapter 
II.5.18). The potential for medical uses of these materi-
als was realized shortly after this. In a 1954 book on sili-
cones, McGregor has a whole chapter titled “Physiological 
Response to Silicones.” Toxicological studies were cited 

FIGURE 9  The Hufnagel heart valve consisting of a poly(methyl 
methacrylate) tube and nylon ball. (United States Federal Govern-
ment image in the public domain.)
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suggesting to McGregor that the quantities of silicones that 
humans might take into their bodies should be “entirely 
harmless.” He mentions, without citation, the application 
of silicone rubber in artificial kidneys. Silicone-coated rub-
ber grids were also used to support a dialysis membrane 
(Skeggs and Leonards, 1948). Many other early applica-
tions of silicones in medicine are cited in Chapter II.5.18.

Polyurethanes

Polyurethane was invented by Otto Bayer and colleagues 
in Germany in 1937. The chemistry of polyurethanes 
intrinsically offered a wide range of synthetic options 
leading to hard plastics, flexible films, or elastomers 
(Chapter I.2.2.A). Interestingly, this was the first class 
of polymers to exhibit rubber elasticity without cova-
lent cross-linking. As early as 1959, polyurethanes were 
explored for biomedical applications, specifically heart 
valves (Akutsu et al., 1959). In the mid-1960s a class 
of segmented polyurethanes was developed that showed 
both good biocompatibility and outstanding flex life in 
biological solutions at 37°C (Boretos and Pierce, 1967). 
Sold under the name Biomer® by Ethicon and based 
upon DuPont Lycra®, these segmented polyurethanes 
comprised the pump diaphragms of the Jarvik 7® hearts 
that were implanted in seven humans.

Teflon®

DuPont chemist Roy Plunkett discovered a remarkably 
inert polymer, Teflon® (polytetrafluoroethylene) (PTFE), 
in 1938. William L. Gore and his wife, Vieve started a 
company in 1958 to apply Teflon® for wire insulation. 
In 1969, their son Bob found that Teflon®, if heated and 
stretched, forms a porous membrane with attractive 

physical and chemical properties. Bill Gore tells the story 
that, on a chairlift at a ski resort, he pulled from his 
parka pocket a piece of porous Teflon® tubing to show 
to his fellow ski lift passenger. The skier was a physician 
and asked for a specimen to try as a vascular prosthesis. 
Now, Goretex® porous Teflon® and similar expanded 
PTFEs are the leading synthetic vascular grafts, and are 
also used in numerous other applications in surgery and 
biotechnology (Chapters I.2.2.C and II.5.3.B).

Hydrogels

Hydrogels have been found in nature since life on earth 
evolved. Bacterial biofilms, hydrated extracellular matrix 
components, and plant structures are ubiquitous, water-
swollen motifs in nature. Gelatin and agar were also 
known and used for various applictions early in human 
history. But the modern history of hydrogels as a class of 
materials designed for medical applications can be accu-
rately traced.

In 1936, DuPont scientists published a paper on 
recently synthesized methacrylic polymers. In this paper, 
poly(2-hydroxyethyl methacrylate) (polyHEMA) was 
mentioned. It was briefly described as a hard, brittle, 
glassy polymer, and clearly was not considered of impor-
tance. After that paper, polyHEMA was essentially for-
gotten until 1960. Wichterle and Lim published a paper 
in Nature describing the polymerization of HEMA 
monomer and a cross-linking agent in the presence of 
water and other solvents (Wichterle and Lim, 1960). 
Instead of a brittle polymer, they obtained a soft, water-
swollen, elastic, clear gel. Wichterle went on to develop 
an apparatus (built originally from a children’s construc-
tion set; Figure 10) for centrifugally casting the hydrogel 
into contact lenses of the appropriate refractive power. 

FIGURE 10  Left: Otto Wichterle (1913–1998). (Wikipedia.) Right: The centrifugal casting apparatus Wichterle used to create the first soft, 
hydrogel contact lenses. (Photograph by Jan Suchy, Wikipedia public domain.)
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This innovation led to the soft contact lens industry, and 
to the modern field of biomedical hydrogels as we know 
them today.

Interest and applications for hydrogels have steadily 
grown over the years, and these are described in detail 
in Chapter I.2.5. Important early applications included 
acrylamide gels for electrophoresis, poly(vinyl alcohol) 
porous sponges (Ivalon) as implants, many hydrogel for-
mulations as soft contact lenses, and alginate gels for cell 
encapsulation.

Poly(Ethylene Glycol)

Poly(ethylene glycol) (PEG), also called poly(ethylene 
oxide) (PEO) in its high molecular weight form, can be 
categorized as a hydrogel, especially when the chains are 
cross-linked. However, PEG has many other applications 
and implementations. It is so widely used today that its 
history is best discussed in its own section.

The low reactivity of PEG with living organisms has 
been known since at least 1944, when it was examined as 
a possible vehicle for intravenously administering fat-solu-
ble hormones (Friedman, 1944). In the mid-1970s, Frank 
Davis and colleagues (Abuchowski et al., 1977) discovered 
that if PEG chains were attached to enzymes and proteins, 
they would a have a much longer functional residence time 
in vivo than biomolecules that were not PEGylated. Pro-
fessor Edward Merrill of MIT, based upon what he called 
“various bits of evidence” from the literature, concluded 
that surface-immobilized PEG would resist protein and 
cell pickup. The experimental results from his research 
group in the early 1980s bore out this conclusion (Merrill, 
1992). The application of PEGs to wide range of biomedi-
cal problems was significantly accelerated by the synthetic 
chemistry developments of Dr. Milton Harris while at the 
University of Alabama, Huntsville.

Poly(Lactic-Glycolic Acid)

Although originally discovered in 1833, the anionic polym-
erization from the cyclic lactide monomer in the early 
1960s made creating materials with mechanical properties  
comparable to Dacron possible. The first publication 
on the application of poly(lactic acid) in medicine may 
be by Kulkarni et al. (1966). This group demonstrated 
that the polymer degraded slowly after implantation in 
guinea pigs or rats, and was well-tolerated by the organ-
isms. Cutright et al. (1971) were the first to apply this 
polymer for orthopedic fixation. Poly(glycolic acid) and 
copolymers of lactic and glycolic acid were subsequently 
developed. Early clinical applications of polymers in this 
family were for sutures, based upon the work of Joe 
Frazza and Ed Schmitt at David & Geck, Inc. (Frazza 
and Schmitt, 1971). The glycolic acid/lactic acid poly-
mers have also been widely applied for controlled release 
of drugs and proteins. Professor Robert Langer’s group 
at MIT was the leader in developing these polymers in the 

form of porous scaffolds for tissue engineering (Langer 
and Vacanti, 1993).

Hydroxyapatite

Hydroxyapatite is one of the most widely studied materi-
als for healing in bone. It is a naturally occurring min-
eral, a component of bone, and a synthesized material 
with wide application in medicine. Hydroxyapatite can 
be easily made as a powder. One of the first papers to 
describe biomedical applications of this material was 
by Levitt et al. (1969), in which they hot-pressed the 
hydroxyapatite power into useful shapes for biological 
experimentation. From this early appreciation of the 
materials science aspect of a natural biomineral, a litera-
ture of thousands of papers has evolved. In fact, the nacre 
implant described in the prehistory section may owe its 
effectiveness to hydroxyapatite – it has been shown that 
the calcium carbonate of nacre can transform in phos-
phate solutions to hydroxapatite (Ni and Ratner, 2003).

Titanium

In 1791, William Gregor, a Cornish amateur chemist, 
used a magnet to extract the ore that we now know as 
ilmenite from a local river. He then extracted the iron 
from this black powder with hydrochloric acid, and was 
left with a residue that was the impure oxide of titanium. 
After 1932, a process developed by William Kroll permit-
ted the commercial extraction of titanium from mineral 
sources. At the end of World War II, titanium metallurgy 
methods and titanium materials made their way from 
military application to peacetime uses. By 1940, satis-
factory results had already been achieved with titanium 
implants (Bothe et al., 1940). The major breakthrough 
in the use of titanium for bony tissue implants was the 
Brånemark discovery of osseointegration, described 
above in the section on dental implants.

Bioglass

Bioglass is important to biomaterials as one of the first 
completely synthetic materials that seamlessly bonds to 
bone. It was developed by Professor Larry Hench and 
colleagues. In 1967 Hench was Assistant Professor at 
the University of Florida. At that time his work focused 
on glass materials and their interaction with nuclear 
radiation. In August of that year, he shared a bus ride 
to an Army Materials Conference in Sagamore, New 
York with a US Army Colonel who had just returned 
from Vietnam where he was in charge of supplies to 15 
MASH units. This colonel was not particularly interested 
in the radiation resistance of glass. Rather, he challenged 
Hench with the following: hundreds of limbs a week in 
Vietnam were being amputated because the body was 
found to reject the metals and polymer materials used 
to repair the body. “If you can make a material that will 
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resist gamma rays why not make a material the body 
won’t resist?”

Hench returned from the conference and wrote a pro-
posal to the US Army Medical R and D Command. In 
October 1969 the project was funded to test the hypothesis 
that silicate-based glasses and glass-ceramics containing 
critical amounts of Ca and P ions would not be rejected by 
bone. In November 1969 Hench made small rectangles of 
what he called 45S5 glass (44.5 weight % SiO2), and Ted 
Greenlee, Assistant Professor of Orthopaedic Surgery at 
the University of Florida, implanted them in rat femurs at 
the VA Hospital in Gainesville. Six weeks later Greenlee 
called: “Larry, what are those samples you gave me? They 
will not come out of the bone. I have pulled on them, I 
have pushed on them, I have cracked the bone and they 
are still bonded in place.” Bioglass was born, and with the 
first composition studied! Later studies by Hench using 
surface analysis equipment showed that the surface of the 
bioglass, in biological fluids, transformed from a silicate 
rich composition to a phosphate rich structure, possibly 
hydroxyapatite (Clark et al., 1976).

THE CONTEMPORARY ERA (MODERN 
BIOLOGY AND MODERN MATERIALS)

It is probable that the modern era in the history of bio-
materials, biomaterials engineered to control specific bio-
logical reactions, was ushered in by rapid developments in 
modern biology (second and third generation biomateri-
als; see Figure 2 in “Biomaterials Science: An Evolving, 
Multidisciplinary Endeavor”). In the 1960s, when the field 
of biomaterials was laying down its foundation principles 
and ideas, concepts such as cell-surface receptors, growth 
factors, nuclear control of protein expression and pheno-
type, cell attachment proteins, stem cells, and gene delivery 
were either controversial observations or not yet discov-
ered. Thus, pioneers in the field could not have designed 
materials with these ideas in mind. It is to the credit of the 
biomaterials community that it has been quick to embrace 
and exploit new ideas from biology. Similarly, new ideas 
from materials science such as phase separation, anod-
ization, self-assembly, surface modification, and surface 
analysis were quickly assimilated into the biomaterial sci-
entists’ toolbox and vocabulary. A few of the important 
ideas in biomaterials literature that set the stage for the 
biomaterials science we see today are useful to list:

	•	� Protein adsorption
	•	� Biospecific biomaterials
	•	� Non-fouling materials
	•	� Healing and the foreign-body reaction
	•	� Controlled release
	•	� Tissue engineering
	•	� Regenerative medicine
	•	� Nanotechnology.

Since these topics are addressed later in some detail in 
Biomaterials Science: An Introduction to Materials in 

Medicine, third edition, they will not be expanded upon 
in this history section. Still, it is important to appreci-
ate the intellectual leadership of many researchers that 
promoted these ideas that comprise modern biomaterials 
– this is part of a recent history of biomaterials that will 
someday be completed. We practice biomaterials today 
immersed within an evolving history.

CONCLUSIONS

Biomaterials have progressed from surgeon-heroes, 
sometimes working with engineers, to a field dominated 
by engineers, chemists, and physicists, to our modern 
era with biologists and bioengineers as the key players. 
As Biomaterials Science: An Introduction to Materi-
als in Medicine, third edition, is being published, many 
individuals who were biomaterials pioneers in the for-
mative days of the field are well into their eighth or 
ninth decades of life. A number of leaders of biomate-
rials, pioneers who spearheaded the field with vision, 
creativity, and integrity, have passed away. Biomateri-
als is a field so new that the first-hand accounts of its 
roots are available. I encourage readers of the textbook 
to document their conversations with pioneers of the 
field (many of whom still attend biomaterials confer-
ences), so that the exciting stories that led to the suc-
cessful and intellectually stimulating field we see today 
are not lost.
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